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Some remarks on an equivalence theorem for an interacting 
massive spin one particle in quantum field theory 

J D JENKINS 
Physics Department, University of Durham, South Road, Durham City, UK 

MS received 1 March 1972 

Abstract. The quantization of a massive spin one particle field, satisfying the first order 
system of equations due to Proca, is summarized. The interaction of such a field with an 
arbitrary field is then considered. Equivalent theqries in terms of vector and antisymmetric 
second rank tensor spin one fields are then constructed in a simple manner, providing a 
generalization of an equivalence theorem due to the author. In addition, this approach, 
involving the use of first order systems of equations, allows a simple extension to the case of 
equivalence theorems for arbitrary integral spin. The nature of this extension is indicated. 

1. Introduction 

In an earlier paper (Jenkins 1972), it was shown, by means of a simple example, how 
equivalent theories of a Dirac field interacting with a massive spin one field, which trans- 
forms under either the (+, +) or the (1,0)@(0,1) representation (SU(2)@SU(2) decomposi- 
tion) of the Lorentz group, may be constructed. In that paper, the transformation 
connecting the corresponding Lagrangians and equations of motion was established 
by way of a rather artificial intermediate theory. In the present paper, this unsatisfactory 
feature is eliminated with the aid of the Proca formalism for spin one (Proca 1936), 
which involves describing a spin one particle by a field transforming under the 
($,i)@(l,  O)@(O, 1) representation of the Lorentz group. The advantages of this 
approach stem mainly from the natural way in which Proca’s formalism falls between 
the above spin one formalisms. 

The plan of the paper is as follows. In Q 2 the quantization of the Proca system is 
summarized, and the Lagrangian and equations of motion governing its interaction 
with an arbitrary field are set up. The equivalent theories in terms of (+,*) and 
(1,0)@(0,1) spin one fields are then constructed in Q 3. In 6 4 a generalization of the 
approach, to include the case of arbitrary integral spin, is indicated. Finally, a discussion 
of the work is given in Q 5. 

2. The Proca system? 

For simplicity, the (3,3)@(1,0)@(0,1) Proca field is taken to be hermitian 

t Throughout this paper, all the considerations are to be understood as being in terms of the Heisenberg picture. 
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and its free Lagrangian is given by 

P 
I;Px(x) = ~ [ W ) + % 4 1  

where the notation here, and throughout this paper is that of Jenkins (1972). On dis- 
carding the appropriate four-divergence terms, the Lagrangian (1) may be written 
equivalently as 

1 -  

- 
- - 7 ( g / h i z  - g,,?,) P4,;., 

b, v'2 
( 2 )  

The Lagrangian (1) will be most convenient for deducing the field equations and 
Lagrangian for the antisymmetric tensor (Pap(x) alone, whilst (2) will be most convenient 
for a consideration of the vector field V,(x) .  

P 
Y ; ( x )  = p"x,d""x)l  

In both the cases (1) and (2 ) ,  the resulting equations of motion are 

NaXP) = = 0. ( 3 )  

The field ~ ( x )  may now be quantized, and, following Takahashi (1969), the Klein-- 
Gordon divisor d id)  is defined by 

A(d)d(c?) = d(d)A(d) = (d2 + p2)1 

where 

whence its form is readily found to be 

The commutator and free-particle propagator of ~ ( x )  are now given in terms of the 
Klein-Gordon divisor as follows : 

[~ (x ) ,  z(x')] = - id(a)A(x - x') 

(T ( z (x ) ,  X(X')))~ = - id(i?)A,(x -x')- i[e(xo - xb), d(d)]A(x - x') 

2x1 = [ v p ( ~ M a p ( x ) l .  

( 5 )  

and 

(6) 

where 
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It should be remarked that the free Proca field equations, (3), are just the transforma- 
tion equations which connect the free (;,I) and (1,0)@(0,1) formalisms. As will be seen 
below, this property of the Proca formalism remains even in the presence of interaction. 

The Proca field ~ ( x )  is now assumed to interact with a field $(x) described by the free 
Lagrangian YJx), and the consequent field equations 

.(2)$(x) = 0. (7) 

The Lagrangian for the interacting system is written in the general form 

where J ,  K ,  and L,, are, initially, assumed to be functionals of +(x) and its conjugate 
field, $(x), only, some more general remarks being reserved for the discussion of 5 5 ; 
and where Yx(x) is understood as being given by either of the equivalent forms (1) and (2), 
whichever is the more convenient. The equations of motion consequent to (8) are 

where {, } denotes the anticommutator. 

3. The equivalence theorem 

The theory of a (1,0)@(0,1) spin one field interacting with the field $(x), which is equiva- 
lent to that given by the Lagrangian (8), is first constructed. To this end, TX(x) in (8) is 
assumed to have the form (l), whence, on using the equation of motion (lo), V,(x) is 
eliminated from (8) in a trivial manner. The resulting Lagrangian is 

a x )  = Y,(x) - ~ W & )  - aa4,,(x))(~,4p”(x) - +Pw) 

The corresponding equations of motion may be obtained either directly from this 
Lagrangian, or by using (10) and its derivatives to eliminate V,(x) from (9) and (11). 
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In both cases the field equations are 

and 

(131 

The inverse transformation is effected by taking (10) as defining the vector part ViL(x) 
of the Proca field ~ ( x )  in terms of the antisymmetric tensor Cpra(x). and reversing the 
above procedure. Thus the equivalence of the theories given by the Lagrangians (8) 
and (12) is established. 

Next the equivalent theory in terms of the (i, 4) spin one field is constructed. This 
time, YZ(x) in (8) is assumed to be of the form (2), whence, on using the equation of 
motion (ll), #,a(x) is eliminated from (8) in a trivial manner. The resulting Lagrangian is 

Again the equations of motion may either be obtained directly from this Lagrangian. 
or by using (11) and its derivatives to eliminate q5,a(~) from (9) and (10). In both cases the 
field equations are 

and 

The inverse transformation is effected by taking (11) as defining the antisymmetric 
tensor part (blP(x) of the Proca field ~ ( x )  in terms of the vector V,(x), and reversing the 
above procedure. Thus the equivalence of the theories given by the Lagrangians (8) 
and (15) is established. 

This result, in conjunction with the preceding result, establishes the equivalence 
of the three theories given by the Lagrangians (8), (12) and (15). 
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4. Arbitrary integral spin 

The extension of the above approach for spin one, to include the arbitrary integral spin 
case, is prefixed by two remarks on the former, which indicate the method and scope of 
the extension. 

Firstly, it is noted that, when the Lorentz group is extended to include parity, the 
only irreducible representations, which contain spin one as the maximum spin, are 
(t, 4) and (1,0)0(0, 1). Secondly, as seen above, spin one fields transforming under these 
representations are naturally connected through the first order Proca formalism. 

Now in the case of arbitrary integral spin 0 there are 0 + 1 irreducible representations 
of the extended Lorentz group which contain as the maximum spin, namely 

a a of1 0-1 0-1 a+l a+2 0-2 0-2 0+2 ii, ?) > (2, T) 0 i T ,  9 i T ,  2) 0 (2, i) 1 .  . . , (0 ,0)0(0,  0). 

In addition, any two spin G fields, which transform under representations, adjacent in 
the above sequence, are naturally connected through first order equations formally 
identical with the Proca system (Corson 1953). It is this last point which allows the 
considerations of $92 and 3 to be extended, almost without change, to the case of 
arbitrary integral spin. 

Let'spin a fields transforming under the above representations be denoted respectively 
by 

(0) (1) (2)  
G P I  ... P&h G[Plu1IP2...au(X)~ G ~ ~ , u 1 1 ~ P 2 " 2 1 P 3 . . . P , ( X ) '  . . . 3 GI;! U,, ... 

where square brackets denote that the field is antisymmetric under the interchange of the 
indices within the brackets, whilst all the fields are assumed symmetric and traceless in 
all the indices not within brackets. Corson (1953) then gives the first order systems of 
equations, connecting these fields, in the free case, as 

with formally similar equations satisfied by the pairs of fields G(' )  and G(2' etc, and where 
K is proportional to the (nonzero) mass of the spin 0 particle. The formal similarity of 
(18) and (19) to the Proca system (3) is evident. 

On the basis of this formal similarity, the considerations of & 2 and 3 carry over, 
without any formal change, to any given pair of the equations of which (18) and (19) are 
an example. Then, given a theory in terms of one of the above spin 0 fields, a step by 
step elimination of the appropriate fields from their first order systems, along the lines of 
$ 3, allows a construction of the equivalent theory in terms of any other of these fields. 
Because of the demonstrated formal similarity to the spin one case, and the cumbersome 
nature of the proof, due to the proliferation of first order Proca-like systems of equations, 
the details of the arbitrary integral spin case are omitted. 

5. Discussion 

It has been seen that the first order Proca formalism provides a spin one theory, naturally 
intermediate between the vector and antisymmetric tensor spin one theories. In the 
free-particle case, and in the presence of an interaction, where the currents, to which the 
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spin one fields couple, depend only on i ( x )  and $(x), the Proca field equations, given 
respectively by (3) and (lo), (1 l), just provide the transformations connecting equivalent 
theories in terms of the vector and antisymmetric tensor spin one fields, which, in turn, 
are equivalent to the original theory in terms of the Proca field. It is exactly this property 
of the Proca formalism which allows such a simple and transparent proof of the equiva- 
lence theorem in $ 3. 

As noted by Jenkins (1972) the essential fornzal differences between equivalent 
theories, of the type considered in that paper and here, lie in the presence of contact 
terms in the Lagrangian (eg the term -(1/2,u2)K~KK, in (12)). As shown in the former 
work, by a perturbation expansion of the S matrix in the interaction picture, the role of 
such terms is to compensate for differences in the free-particle propagators of correspond- 
ing fields in the equivalent theories. If now the results of § 3 are generalized to allow K, 
and L,, to be, in addition, functionals of V,(x) and $zp(x), then the above remarks, 
although still valid, take on a more complicated structure. For, in this case, a compen- 
sating contact term will, in general, contain the spin one field, whose presence must be 
compensated for by a further contact term, and so on. Thus the introduction of these 
contact terms will be an iterative procedure, in general not ending after a finite number 
of steps. In terms of the first order Proca formalism, this phenomenon is reflected in the 
use of the analogues of (10) and ( l l ) ,  to eliminate V,(x) or 4@,(x) from the Lagrangian 
being, also, an iterative procedure. 

Finally, the only types of nonderivative interaction, other than mass terms and that 
considered in $3 ,  for which the above process of elimination is always finite, are the 
following : 

(i) K, = K , ( i W 3  ?+4> 4&)) L, = L , ( i ( X ) >  &4 
(ii) K, = Kp($(x)3 $(XI) L, = L,(W)> s;(x). V,(x,) 

the dependences on V,(x) and $z,(x) both being linear. An example of these more general 
cases is provided by the minimal electromagnetic interaction of spin one particles, and 
this subject is treated in detail in a separate paper. 
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